首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   91篇
  国内免费   142篇
  2024年   1篇
  2023年   19篇
  2022年   17篇
  2021年   16篇
  2020年   36篇
  2019年   34篇
  2018年   40篇
  2017年   26篇
  2016年   19篇
  2015年   35篇
  2014年   34篇
  2013年   22篇
  2012年   14篇
  2011年   18篇
  2010年   19篇
  2009年   30篇
  2008年   21篇
  2007年   25篇
  2006年   30篇
  2005年   17篇
  2004年   9篇
  2003年   7篇
  2002年   10篇
  2001年   5篇
  2000年   8篇
  1999年   7篇
  1998年   6篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1958年   1篇
排序方式: 共有565条查询结果,搜索用时 15 毫秒
81.
Seed dispersal is a key process in plant community dynamics, and soil seed banks represent seed dispersal in time rather than in space. Despite their potential importance, seed bank dynamics in the Arctic are poorly understood. We investigated soil seed banks and corresponding plant community composition in three contrasting vegetation types in West Greenland, viz. dwarf shrub heaths, herb slopes and fell‐fields. Through germination testing, 31 species were documented in soil seed banks. All of these were herbaceous, while no dwarf‐shrub species, which represents the dominating growth form in the above‐ground vegetation, were emerging from the seed bank. Consequently, across vegetation types, the lowest similarity between seed bank and above‐ground vegetation was found in dwarf shrub heath. Nine plant species were exclusively found in seed bank, all of which were non‐clonal forbs. Seed bank size (total number of seeds) and species richness seemed to increase with the level of natural disturbance. Additionally, we examined the effect of different experimental light and temperature conditions on the quantity and diversity of germinating seeds. The difference in diversity in vegetation and seed bank at the species level will impact population dynamics, regeneration of vegetation after disturbances and its potential to respond to climate change.  相似文献   
82.
黄土高原北部典型灌丛枝条生物量估算模型   总被引:3,自引:0,他引:3  
杨宪龙  魏孝荣  邵明安 《生态学杂志》2016,27(10):3164-3172
于2015年8月末在陕西神木县六道沟小流域采集200个柠条和210个沙柳枝条,测定枝条的基径(D)、长度(H)、含水量(W0)、鲜质量(WF)和干质量(W),选用指数函数和异速生长方程建立了4种由枝条形态指标估算枝条生物量的简易模型,并对模型的拟合效果进行验证. 结果表明: 对于柠条和沙柳灌丛,基于DH二者组合变量(D2H)的异速生长方程是估算枝条生物量的最优模型,该模型经线性转化后可以消除生物量数据的异方差性,且拟合效果最优,决定系数(R2)最大,平均误差(ME)、平均绝对误差(MAE)、总相对误差(TRE)、平均系统误差(MSE)和平均绝对百分误差(MPSE)整体上最小,基本满足生态学研究的精度要求.  相似文献   
83.
Xu CY  Schuster WS  Griffin KL 《Oecologia》2007,153(4):809-819
In the understory of a closed forest, plant growth is limited by light availability, and early leafing is proposed to be an important mechanism of plant invasion by providing a spring C “subsidy” when high light is available. However, studies on respiration, another important process determining plant net C gain, are rare in understory invasive plants. In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late-leafing deciduous species, in an oak-dominated deciduous forest. The seasonal trend of the basal respiration rates (R 0) and the temperature response coefficient (E 0), were different among the three shrubs and species-specific negative correlations were observed between R 0 and E 0. All three shrubs showed significant correlation between respiration rate on an area basis (20°C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii.  相似文献   
84.
Many arid grassland communities are changing from grass dominance to shrub dominance, but the mechanisms involved in this conversion process are not completely understood. Aeolian processes likely contribute to this conversion from grassland to shrubland. The purpose of this research is to provide information regarding how vegetation changes occur in an arid grassland as a result of aeolian sediment transport. The experimental design included three treatment blocks, each with a 25 × 50 m area where all grasses, semi-shrubs, and perennial forbs were hand removed, a 25 × 50 m control area with no manipulation of vegetation cover, and two 10 × 25 m plots immediately downwind of the grass-removal and control areas in the prevailing wind direction, 19° north of east, for measuring vegetation cover. Aeolian sediment flux, soil nutrients, and soil seed bank were monitored on each treatment area and downwind plot. Grass and shrub cover were measured on each grass-removal, control, and downwind plot along continuous line transects as well as on 5 × 10 m subplots within each downwind area over four years following grass removal. On grass-removal areas, sediment flux increased significantly, soil nutrients and seed bank were depleted, and Prosopis glandulosa shrub cover increased compared to controls. Additionally, differential changes for grass and shrub cover were observed for plots downwind of vegetation-removal and control areas. Grass cover on plots downwind of vegetation-removal areas decreased over time (2004-2007) despite above average rainfall throughout the period of observation, while grass cover increased downwind of control areas; P. glandulosa cover increased on plots downwind of vegetation-removal areas, while decreasing on plots downwind of control areas. The relationships between vegetation changes and aeolian sediment flux were significant and were best described by a logarithmic function, with decreases in grass cover and increases in shrub cover occurring with small increases in aeolian sediment flux.  相似文献   
85.
李平星 《生态学杂志》2012,31(10):2651-2656
生态重要性评价是识别重要生态功能区、优化区域空间开发格局的有效途径。本文提出了基于生态因子适宜性和生态区位重要性的分项评价、进行生态重要性整合分析的研究思路,以广西西江经济带为案例区,开展生态重要性评价及其与现状建设用地的空间叠置关系研究。结果表明,经济带极重要区、很重要区、重要区、一般区、不重要区所占比重分别为16%、36%、17%、15%、16%;西部地区重要性相对较高,东部地区重要性居中,中部地区重要性较低。已有城镇建设用地和农村居民点主要分布在不重要区、重要区和很重要区,工矿用地分布相对分散。依据重要性评价结果进行有选择、有导向的生态空间占用,可在一定程度上减轻区域工业化和城镇化所带来的生态环境压力,实现区域可持续发展。  相似文献   
86.
Changes in the terrestrial carbon cycle may ameliorate or exacerbate future climatic warming. Research on this topic has focused almost exclusively on abiotic drivers, whereas biotic factors, including trophic interactions, have received comparatively little attention. We quantified the singular and interactive effects of herbivore exclusion and simulated warming on ecosystem CO2 exchange over two consecutive growing seasons in West Greenland. Exclusion of caribou and muskoxen over the past 8 years has led to dramatic increases in shrub cover, leaf area, ecosystem photosynthesis, and a nearly threefold increase in net C uptake. These responses were accentuated by warming, but only in the absence of herbivores. Carbon cycle responses to herbivore exclusion alone and combined with warming were driven by changes in gross ecosystem photosynthesis, as limited differences in ecosystem respiration were observed. Our results show that large herbivores can be of critical importance as mediators of arctic ecosystem responses to climate change.  相似文献   
87.
88.
89.
General circulation models consistently predict that regional warming will be most rapid in the Arctic, that this warming will be predominantly in the winter season, and that it will often be accompanied by increasing snowfall. Paradoxically, despite the strong cold season emphasis in these predictions, we know relatively little about the plot and landscape‐level controls on tundra biogeochemical cycling in wintertime as compared to summertime. We investigated the relative influence of vegetation type and climate on CO2 production rates and total wintertime CO2 release in the Scandinavian subarctic. Ecosystem respiration rates and a wide range of associated environmental and substrate pool size variables were measured in the two most common vegetation types of the region (birch understorey and heath tundra) at four paired sites along a 50 km transect through a strong snow depth gradient in northern Sweden. Both climate and vegetation type were strong interactive controls on ecosystem CO2 production rates during winter. Of all variables tested, soil temperature explained by far the largest amount of variation in respiration rates (41–75%). Our results indicate that vegetation type only exerted an influence on respiration when snow depth was below a certain threshold (~1 m). Thus, tall vegetation that enhanced snow accumulation within that threshold resulted in more effective thermal insulation from severe air temperatures, thereby significantly increasing respiratory activity. At the end of winter, within several days of snowmelt, gross ecosystem photosynthesis rates were of a similar magnitude to ecosystem respiration, resulting in significant net carbon gain in some instances. Finally, climate and vegetation type were also strong interactive controls on total wintertime respiration, suggesting that spatial variations in maximum snowdepth may be a primary determinant of regional patterns of wintertime CO2 release. Together, our results have important implications for predictions of how the distribution of tundra vegetation types and the carbon balances of arctic ecosystems will respond to climate change during winter because they indicate a threshold (~1 m) above which there would be little effect of increased snow accumulation on wintertime biogeochemical cycling.  相似文献   
90.
Changes in structural and compositional attributes of shinnery oak (Quercus havardii Rydb.) plant communities have occurred in the twentieth century. These changes may in part relate to altered fire regimes. Our objective was to document effects of prescribed fire in fall (October), winter (February), and spring (April) on plant composition. Three study sites were located in western Oklahoma; each contained 12, 60 × 30‐m plots that were designated, within site, to be seasonally burned, annually burned, or left unburned. Growing season canopy cover for herbaceous and woody species was estimated in 1997–1998 (post‐treatment). At one year post‐fire, burning in any season reduced shrub cover, and spring burns reduced cover most. Winter and annual fires increased cover of rhizomatous tallgrasses, whereas burning in any season decreased little bluestem cover. Perennial forbs increased with fall and winter fire. Shrub stem density increased with fire in any season. Communities returned rapidly to pre‐burn composition with increasing time since fire. Fire effects on herbaceous vegetation appear to be manifested through increases in bare ground and reduction of overstory shrub dominance. Prescribed fire can be used as a tool in restoration efforts to increase or maintain within and between community plant diversity. Our data suggest that some plant species may require or benefit from fire in specific seasons. Additional research is needed to determine the long‐term effects of repeated fire over time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号